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ABSTRACT

This.péperlconsiders a class of Markov chains on a bivariate state
space (N,E), whose transitjon probabilities have a particular "block-parti-
tioned" structure. Examples of such chains include those studied by Neuts
(1978) who took E to be finite; they also include chains studied in queueing
theory, such as (Nn’sn) where N is Fhe number of customers in a GI/G/1
queue immediately before, and Sn the remaining service time immediately
after, the nﬁ‘arrival.

We show thét the stationary distribution II for these chains has an
"operator-geometric' nature, with l(k,*) = ]n(o,dy) Sk(y,-). where the
operator S is the minimal solution of a ncn;linear operator equation.
Necessary and sufficient conditions for II to exist are also found. In the
éase of the GI/G/1 queueing chain above these are exactly the usual stability

conditions.

Keywords: G1/G/1 queue, phase-type, invariant measure, Foster's conditions.
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1. INTRODUCTION

In [8]1, [9] and [10] Neuts has shown that certain classes of Markov
chains admit a stationary distribution of a form which he has termed "matrix-
geometric". _ Such chains have a bivariate state space (i,j), 1 = 0,1,...,
i =1,...,n; the stationary distribution I(i,j) has the geometric property
that

n¢o,j) .= oﬂ(j), }=1,...5m,

RCL,3) = (UST)y, 3 =1, ....m,

for a particular nx*n matrix S.

The class of chains with this structure includes embedded Markov
chains associated with GI/PH[l queues, where the service time distribution
is "phase-type" [7]. The second variable j then indexes the phase of the
service time.

In this paper we investigate more general chains with bivariate space
(1,x), where the first coordinate i takes on integer values 0,1,.., but -
the second coordinate x is in E, some general measure space. In particular
examples such as the GI/G/1 queue in §4 below, E will be taken as [0,«).

We let & denote o-field on E; when E = [0,~) we will take & as the Borel
o-field. We denote by N the set {0,1,...}, and the set ixE will be called
the level i, and denoted by i.

The basic Markov chain {Xn} that we shall study is assumed to have a
transition probability law denoted by P(i,x; j,hA) for 1,3 ¢N, x ¢ E, A € &,
As usual it is taken to be a measurable function in x for each A ¢ & and
a substochastic measure on & for each 1, ¢ N and x ¢ E; we also assume

2 P{i,x; J,E) = 1. The n-step iterates of P are defined by
3

PM(1,x; §,A) = ) J Pn_l(i.x; k,dy) P(k,y: 1,A) ,
k
E

and have the interpretation




i
L
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P(i,x; §,A) =P(X ¢ jxA | Xy = (1,x)}

We now impése the following "spatial homogeneity" pattern on the

transition law P. We assume that

-

P(i,x; 3,E) =0, j>1i+1,

and fur each k = 0,1,... there exists a substochastic transition kernel Ak
(that is, a collection Ak(x,A), x € E, A € & measurable in x for each A
and a measure on & for each x ¢ E, with Ak(x,E) < 1, x € E) such that for

jto,

(1.1 P(i,x; j,A) -VAi_j+1(x,A) H
and we write

P(i,x; 0,A) = Bi(x,A) .

Since P is stochastic, from (1.1) we have

P(i,x; 0,E) = 1 - 321 Ay_g41 (6B

e e e

i
=1~ 7 Ay (x,E)
j=0
(1.2) = B, (x,E) .

Diagramatically, (1.1) and (1.2) show that we can write P as

Bo Ao o ...
(1.3) P = Bl Al Ao 0 ...
B2 Az Al AO 0 ...

.
. . . . .

by labelling the states in increasing. order on the first variable. Typically
o

(see [3) and §4) in queueing applications we have 2 Ak(x,E) = 1, so that
k=0

B,(x,E) = (x,E).
3 jzl H




LAY

2. THE OPERATOR-GEOMETRIC FORM OF Il

A stationary probability measure II for the chain {Xn} is a collection

of measures N(j,*) on E, j ¢ N, wirh 2 N(j,E) = 1, and satisfying

]
M(3,4) = ) J N(k,dy) P(k,y; j,A) , A€ &, jei. 1
k E
From (1.1) and (1.2), for j > O #
(2.1) n(j,a) = 2 J I(k,dy) Ak_3+1(YsA) ’
| kg ]
whilst for j = 0,
(2.2) n(0,a) = § I (k,dy) Bk(Y.A) .
k
E

In order to use the theory of general Markov chains to find conditioms
under which a measure N satisfying (2.1)-(2.2) exists, we shall assume the

following.

Irreducibility condition: There is a measure 9(+) on N xE such that, when-

ever . $(3,4) >0 for some j ¢ N, A € 8, for each 1 ¢ N and x ¢ E we have

(2.3) 0< ) P(,x; j,a) ;

n=1
and ‘
(2.4) $(0,E) > 0 .

The condition (2.3) is just the standard $-irreducibility condition (see
{141, §2, or {11], [12]). We impose (2.4) specifically because of the
behaviour we wish to investigate : the chain {Xn} satisfying (2.4) and (2.3)
is such that from any pair (i,x), the zero-level 0 can be reached eventually
with positive probability.

The key to the operator geometric structure of any solution I to
(2.1) and (2.2) is a last exit-time representation of N, familiar in the

countable case (cf. [1]). We write, for 1, ¢ N, x € E, A € §,




OB 3,8) = P(1,x; 1,4)

OP“(i,x; 3. A) = § J 0P“’l(i.x; k,dy) P(k,y; 3,A) .
j ' k>0

These are the taboo probabilities of (Xn} where the level 0 is taboo; and

we write

o

L(i,x; j:A) = z
n=1

n .
of (1,%; 3,4) .

If 1y = inf(n > 0 : X ¢ 0), then

0
L(0,x; 0,E) -IP(TO <= | Xy = (0,x))

1,

and L(O0,x; j,A) for j > O is just the expected number (possibly infinite)
of visits to state j xA before returning to level 0.

We now have
Theorem 1: (1) If the chain {xn} has a stationary probability wmeasure I,
then N{Q,E) > 0. For NM-almost every x € E, we have L(0,x; O0,E) = 1.
The chain {oxn} defined on E with transition law L(x,A) = L(0,x; 0,A) has

a stationary probability measure, 0H(-), satisfying

(2.5) OH(A) = J 0n(dy) L(y,A), Ae & .
E

The measure 1 is then given, for j > 0, by

(2.6) N(3,4) = ¢ I OH(dY) L(0,y; j,A), A€ 8,
E .
and
(2.7) H(0,4) = c NI(A), A €&,
_where
(2.8) c = (m,e)1™ > 0.

(11) If oII(A), A ¢ & 1s a probability measure on & satisfying

(2.5), then I defined by (2.6) and (2.7) is a o-finite measure satisfying




(2.1) and (2.2).

Proof: Most of these results are well-known in a general context. If T

exists as iﬁ (1), then 1 >> ¢ and so N{Q,E) > 0 from (2.4). The existence
of I implies the chain {Xn} is l-positive recurrent (see [14]) and so, since
n(0,E) > 0, we have L(i,x; 0,E) = 1 for N-almost all (i,x) € NN xE. It is

then easy to see ({11], pp. 32-33) that 0II(-) = (0, «)/T(0,E) is invariant

for the chain with transition law L(x,A); one has to check that, writing
N=1{y e E : L(y,E) <1}, ihe set N={y e E : Z Ln(y,N) > 0} also has i
I(R) = 0, which is a standard result. ?

Since {Xn} is a ?-irreducible chain, I is unique; it is not difficult
({11], p. 32) to check that the measure given by the right-hand sides of
(2.6), (2.7) is invariant for {Xn}, and so must be N. This also shows
that (i1i) is true. O

This theorem basically shows that the only invariant measure is

given by (2.6) and (2.7), and motivates the investigation below into the
structure of the quantities L{i,x; 3,A). We shall define, analogously
with the quantities L(i,x; 0,A), the more general taboo probabilities

2l'-‘.(i’X; j,A) = Z !Pn(i:x; i, ,
' n

where

L
JPHLX: 5,8) =B(X €3 xA X $2,r=1,...,01 | %5 = (1,%) .

The first crucial aspect of the structure (1.3) of P that we use is that
the chain moves in a "right-continuous” way between leveis; from i one can
increase levels to i+1 but not in one step to i1+k, k > 1. Hence, if
£ <4, 82, ,PM,x; 5,8) = P(X_ed x4 X f{01,...2)r=1,...,

n-1 [ xo = (1,x)}. We can thus define, as in [9],
(2.9) s (x,8) = L(Lx; 14,8, 1 €N, x €E, A €8,

independent of 1{. (This can be checked by writing out S(k) in terms of

,,“
e -




the A We write

3

s(x,a) = s (x,4) .

The following result then parallels Theorem 1 of [9].
Theorem 2: ~-Suppose the Markov chain {Xn} has an invariant probability

measure Il.

(i) For k > 0,

M(k,A) = ¢ J @) s y,8)
E

where ¢ = [H(O.E)]—l‘
(1i) For k > 0,

S(k)(x,A) = Sk(x,A), x € E, A e §,
where
s1(x,A) = S(x,A), x ¢ E, A€ &,

and

sK(x,a) = J sk"1(x,dy) S(y,A), x € E, A € &,
E

are the usual iterates of the kernel S(x,A).

(111) The kernel S satisfies the non-linear operator equation
(2.10) S = A[S]

where we .define, following [8], the formal series

D[Q) (x,B) = ] J Q*(x,dy) D, (y,B), x ¢ E, B ¢ &
k=0 E

for any set DJ of kernels and the iterates Qk of any kernel Q.
(iv) The kernel S is l-transient (see [14]) and in fact for OH-almost all

x € E,

(2.11) J sK(x,E) < = .
K

(v) If S is another kernel satisfying S = A[§], then

o




(2.12) g(x,A) > s(x,A), x € E, Ac&,

Proof: (1) This is just a restatement of the general result in (2.6) and
(2.7), using the fact that by definition (2.9), L(0,y; k,A) = S(k) (x,A).
(i1) We have, decomposing over the time of last entrance to level k,

n
op“m,x; k+l,A) = §

J oPr(O,x; k,dy) kp“"’(k,y; k+1,A)
r=0

E

it~

(2.13) -

J OP’(O,x; k,dy) oPn'r(O.y; 1,4) ,
!:0E

and summing (2.13) over n gives the result

s (4 o J s (x,dy) s(y,8)
E

as required.

(ii1) In this case we decompose oPn over the position at time n-l.
By construction, 0P(O,x; 1,B) = Ao(x,B) and for n>1,

(2.14) of (0:x; 1,B) = ]

P10, % k,dy) A (v,B) ;
k=1 J 0 Ak

E

summing over n leads, using (ii), to the required result,

(1v) since s* = 57, ve have that § s*(x,B) = B, Xy = (0,x0).
k=1

It is well-known that, since $(0,E) > 0, this quantity is finite for II-

almost all x € E; to see this one uses the fact that, from (i) above,

1 =NNXE) =¢ j 0II(dy) Z Sk(x,E) .
k
E

(v) As in [9], we first define another sequence of kernels by

B3

{1}

setting Xo(x,B) 0, and x.m_1 = A[XN] for N > 0. For every x ¢ E, B ¢

we have Xo(x,B) < S(x,B), and by induction

(2.15) KN+1(x,B) - A[X.N](x,B) < A[s)(x,B) = 5(x,B) .




A similar calculation also shows XN(x,B) to be monotonically increasing in
N for every x ¢ E and B ¢ &. Hence the quantity X, (x,B) = %i: + Xy(x,B) exists
for every x4€ E aﬁd B e &  For each fixed x, this setwise convergence guaran-
tees thatlx*(x,°) is a measure on &; for each B ¢ &l’ X,(*,B) is clearly a

-

measurable function on E which is finite except perhaps on the set

Ng = {y € E : §(y,E) = =}, The kernel X, is a solution to (2.10), since

the monotone convergence of XN(x,B) to X,(x,B) implies firstly that

XE(x,B) 4 X;(x,B), and then that X,(x,B) = Lin Xy(x,B) = ALZ]1GB)

Moreover (2.15) shows that X, (x,B) §_§(x,B) for any solution s satisfy{ng
(2.10), so that X, is the minimal solution of (2.10).
We now show that in fact X, = S, as in [9]. Define
N .

L oP"0,x; k,B) ,

S, (x; k,B) =
L n=]1

so that clearly SN(x; 1,B) 4 s(x,B). Now from (2.14), we have

(2.16) SN(x; 1,8) = Ay(x,B) + ) J;SN_I(x; k,dy) A (y,B) . b4
k=1
E

Moreover, the last exit equations (2.13) give

Sy (6 KLB) < [ 566 kdy) Sy 1G5 L), B e 6,
E

k+l
N-1

so that S, . (x; k+l,B) < S. " (x; 1,B), B ¢ &.

Substituting in (2.16) gives

(2.17) SN(x; 1,B) j.é J ngl(X; 1,dy) Ak(y.B) .
E

Finally, note that Sl(x; 1,B) = Ao(x,B) = Xl(x,B), and so from (2.17), we

have by induction é
Sy(x; 1,B) < %y(x,B) .

Taking limits as N + « gives S(x,B) < X,(x,B) as required. a

e n . . .

Rl e D i i R MG




This result shows that Theorem 1 of [9] and Theorem 3 of (8] are
essentially a product of the standard construction of T as in Theorem 1

above, with the geometric part Sk coming from the right-continuity and

translation invariance of P. The multiplier OH is shown in Theorem 3 of %

[8) to be an eigenvector of the matrix B[S]; our next result gives the i

probabilistic explanation for this.

Proposition 1 : The Markov chain {oxn} has the transition law

L(x,A) = B{S](x,A)

and hence when {Xn} has a stationary measure I, for on-almost all x € E,

(2.18)  BIS)(x,E) = 1.

Proof : As in (2.14), 0P(O,x; 0,A) = Bo(x,A) and for n > 1
o«

OPn(O,X; 0,A) = kil Jopnnl(o,x; k,dy) Bk(y,A) s
B

so that the form of L(x,A) follows on summing over n. The result (2.18) .

is then immediate from Theorem 1(i). a

The probabilistic interpretation here explains (2.18) which is
derived directly in [8]. The direct derivation as in [8] does give us

the following uniqueness result for the kernel S.

Theorem 3 : Suppose § sarisfies S = A[§]. For any & € E, either

aeN= {y : X §k(y,E) = ®},  or §(a,A) =z s(a,A), A e &, .
k

Proof : From (2.12), §(x,A) > S(x,A) for all x ¢ E, A € & (note that this

proof does not require Il to exist); and so for all A,

(2.19) B{S](x,A) > B[S)(x,A) ;

moreover, for any x, A, the inequality in (2.19) is strict if there exists

B with §k(x,B) > Sk(x.B) and B, (y,A) > 0, y ¢ B. Now note from (1.2) that
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'Bk(y,E) f.Bl(y,E) for all y ¢ E; and so, since ¢(0,E) > 0, it follows that

Bl(y,E) >0 for all y € E, from (2.3). Hence from (2.19) if for some x ¢ E

and B e_&, § (x,B) > S(x,B), then
(2.20) ~ B[S](x,E) > B[S](x, E) .

Now suppose @ & ﬁ. Then

81D = ] [ B,5.B)
: k=0
E
] Ak k
-3 Is (xdy) [1- ) A (3,E)]
k=0 £=0
= 7 e - ] ] J§“<x,dy> Ay (7,E)
k=0 =0 k=2
E
(2.21) - J7 %x,B) - J 7 ¥x,awy § J §*(w,dy) 4,(y,E)
k=0 k=0 =0
E E
= J §%x,E) - j y 8%(x,dw) S(w,E)
k=0 E k=0
=]

from (2.10) and the fact that SC(x,E) = 1. Since a 4 N, the minimality of
S implies a % N so (2.21) also shows B[S](a,E) = 1. Hence (2.20) cannot

hold with a & ﬁ, and so g(a,B) Z S(a,B) as required. a

This result is in some sense an analogue of Theorem 2 of [8], although
the proof is quite different, and the uniqueness result is not as strong.
We need more structure than is generally available (unless E is finite) to
gain the complete analogue of Theorem 2; we now investigate this. Following
[15], we call the kermel {S(x,A)} R-recurrent if (i) S is p~irreducible for
some U, (11) for any r < R there is some A ¢ & with u(A) > 0 and some x ¢ E

with Z Sk(x,A)rk < o (iii1) for all A ¢ & with p(A) > 0, and all x ¢ E, the
k

series Z sk(x,A)Rk diverges. Recall from [15] that there is then a unique
k

St e
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R—subinvariapt measure Q(°*) satisfying

(2.22) . Q) >R I Q(dy) s(y,A), A e &,

which is R-tmvariant, i.e. satisfies (2.22) with equality. The quantity
R‘l is the natural analogue of the Perron-Frobenius eigenvalue for finite
matrices, with Q the corresponding eigenvector.

Hence the restriction in [8] to solutions of (2.10) with spectral
radius sp(S) <1 corresponds to restricting ourselves to solutions of (2.10)
with radius of convergencé R > 1. If S is l-recurrent then this is the
natural analogue of sp(S) = 1, whilst if S is R~recurrent for R > 1,
then this is analogous to sp(R) < 1. Our next result thus covers the

dichotomy of Theorem 2 of [8] exactly if we recall that when E is finite and

R > 1, then Z Sk(x,E) < ® for all x; this does not happen when E is infinite.
Theorem 4 : Suppose that for some measure Y the kernel A(x,B) = Z Ak(x,B) is
k

w-irieddcible, and that the miﬁiﬁal solution of S = A[8] is u=-irreducible
for some M. Then the convergence norm R of the kernel S satisfies R > 1.
Suppose further that S is R-recurrent. Either

(1) R = 1: and then S is the unique (up to definition on a Y-null set)
solution of S = A[S] with convergence norm at least unity; or

(ii) R > 1l: and then if S = A[§], either w(ﬁ) = 0 and so from Theorem 3
S=§ Y-a.e.; or N = E, and so S(x,E) < §(x,E) for every x 4 N. In
particular, if (xn} has a stationary measure Il then either § = S y-a.e. or
s<§ OH-a.e. |
Proof : Since {A(x,+)} is y-irreducible, it has at least ome l-subinvariant
measure V (see[l5]). Let XN be the sequence of kernels approximating S as
in the proof of Theorem 2(v). Clearly Vv(B) E_I v(dy) Xo(y,B), and by

induction
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[ vy o = | vy ) x§<y,aw> A, (u,B)
E

m— E—

(2.23) \)(dw) Z A, (W,B)

- < v(B) ;

hence V(B) Z.J v(dy) S(y,B), and hence [15], since S has a l-subinvariant

measure, S must have convergence nor; R 2_1. Assume now that S is R~
recurrent.

(1) Let S be aﬁy other kernel satisfying S = A[g]. If S is l-recurrent,
and S has convergence norm R > 1, then S §.§ implies that § is l-recurrent

also. Let a be the unique l-invariant measure of §; from (2.22), and (2.10),

4() = | Q(dy) S(y,B)
E

(2.24) - [ 8@ 1 [ a0 a@m
k
E

=~

[ n
= | Qaw) } A (w,B) .
k

/

E

Hence a is l-invariant for the kernel {A(x,*)} and from (2.23), we have
that a is l-subinvariant for S. Since S is l-recurrent, it has a unique

l-subinvariant measure Q which is thus a. Thus we have for all B ¢ &

(2.25) | IQ(dw} S{(w,B) = Q(B) = J Q(dw) S(w,B) , -
E E

and from (2.25) and the minimality of S it follows that for each B ¢ &,
S(w,B) = §(w,B), except perhaps for w ¢ DB where Q(DB)'- 0. By taking a

) < » for each ] it follows that there exists

sequence B, + E with Q(B

3 h |

D=UD, with Q(D) = 0 such that §(w,B) = S(w,B), w ¢ D. Since Q > ¥
3 73

we have proved (i).
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©

(1ii) As in [8], we write A*(x,B) - E Ak(x,B) zk, 0<z<1.
z k=0 -7

Suppose that S is R-recurrent with R > 1, and let Q be the unique R-

invariant measure for S. As in (2.24) we have
(2.26) Q(B) = R J Qaw) ] B A (u,B)
k
E

so that Q(*) is also R-invariant for-A* 1
-

and note that, since {A(x,;)} is Y-irreducible so is {C(x,+)}.

(v,4).  Write C(w,A) = A*_, (w,A);
R

Now suppose S satisfies (2.10), and assume that W(ﬁ) > 0. Note first

of all that N Oy} §k(y,ﬁ) > 0}, and hence F = N° is "closed" in the sense
k

that if y € ?, then §(y,ﬁ) = (0, But from Theorem 3, on f we have
§(y,°) z S(y,*); so S(y,ﬁ) =0, v ¢ F. Since S is p-irreducible, this
implies that either F 1s empty (i.e. N =E as required) or else u(?) > 0;
and in the latter case from (2.22) we have Q(ﬁ) > 0.

Let Ql(A) = Q(A n %); standard results give that Q1 is also R-
invariant for S, when § is R-recurrent (but not necessarily otherwise,

and so from (2.26),

(2.27) Ql(A) = R J Ql(dw) C(w,A) .
But iterating (2.27) and summing shows
Q, (a) [1‘-11'1]'1 = f Q, (dw) 1 ck(w.A) 3
k

taking A = N then leads to a contradiction since w(ﬁ) > 0 implies

Z Ck(w,ﬁ) > 0 for all w but Ql(ﬁ) = J by construction. g
k

Remark : If we assume that E is finite then the assumption that A is

irreducible is enough to ensure that S is irreducible, using Perron-

Frobenius theory: see [8], pp. 187-188.
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i §3 Neuts' "mean-drift" condition

In Theorems 2 and 3 of [8], Neuts shows that the existence for {Xn}
of an invariant probability measure of matrix geometric form is equivalent,

when the matrix A = Z Ak is stochastic and irreducible, to
- k

(3.1) JV(dW) B(w) >1,
E
- -]
where B(w) = 2 n An(w,E) and v is the unique invariant measure for
n=0

' {A(x,9}. In his-context, where E is finite, V 1is guaranteed to exist from
Perron-Frobenius theory, and the proof that (3.1) is equivalent to the
existence of a stationary distribution relies heavily on that theory.

In the general context we need other tools. We have already shown
that any stationary measure must be ''operator geometric"; in this section
we investigate the probabilistic significance of (3.1) and show that it is

very closely related to the positive recurrence of {Xn}, provided B, (x,*)

has suitable structure. Specifically, we let {in} be a chain as in §1 with %

the zero-level probability structure

o
(3.2) B (x,4) = ] Ay(x,4) ,
J=k+1
and let in(i,x; j,B) denote the n-step transition probabilities of {in}.

We shall need the following relationships between {§n} and {A(x,°)}.

Proposition 2 : (i) For every n, 1 and x

(3.3) Po(i,x; NxB) = A%(x,B) .

(11) If {X } is -irreducible, then {Ax,)} is Y~irreducible,
when P(B) = 5(}! xB), B ¢ &.
(111) 1f fin} is 5—irreducible, and has a stationary

~

probability measure-II, then {A(x,*)} has a unique stationary probability

measure v, with v(-) = II(N x>,
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(iv) 1If {in} is 5-irreduc1ble, and {A(x,°*)} has a stationary

probability measure, then either
(a) {in} also has a stationary probability measure; or

(b) for 5-a1most all (4i,x), and any level j,

[

o .
(3.4) mi ¥ P™4,x; 3,E) = 0.
n m=

oo 1
Proof : (i) From (3.2) we have E(i,x{ N,B) = A(x,B), for all 1i; and thence
by induction

3(1,x; N,B) = | I L, x; k,aw) B(k,w; N,B)
k
E

= J 37714, x; N,dw) A(w,B)
).

= A™(x,B) .

(11) 1f $(N><B) > 0 then for each (i,x), there exists n such that
0 < P™(4,x; N,B) = A"(x,B) so that {A(x,*)} is Y-irreducible.

(1i1) 1f i exists, then from (3.3)

TN xB) = 2 I ﬁ(k,dw) E(k,w; tN,B)
k

= I ﬁmxdW) A(W,B) ’

and so v(+) = ﬁ(N x+) is stationary for {A(x,+)}: the uniqueness of v follows

since {A(x,*)} is Y-irreducible.
(1v) Suppose that v exists but 1l does not. From Proposition 4.2 of

[14] there is then a sequence of sets B(k) ¢+ NXE such that for all (i,x),
§n(1’x; B(k)) + 0, n + =,

Fix the level j and let (3§ xC(k)) = B(k) " jJ. Since v is a probability

messure we can certainly choose k sufficiently large that v(C(k)) > 1 - €,

for given € > 0. Now Proposition 4.2 of [14] also shows that for Y-almost

i i -
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all x,

n
(3.5) Jlm i) Aec0) = vEw) 21 -,
nre 1

and so from (3.5) and (3.3) we have

lim L 12‘ P(1,%; 3,E)
n
T

e 1 ;
1 9 m,, . : 1 ¢ Im,, _,

=lm < JOPR(x; 3,C00)) + Lim = ] PR(4,xi §,E\C(K))

oo T opal . o+ = m=1l
) 1 7 3 1 §

<lim = § P®(1,x; B(k)) + lim = ) A%(x,E\C(K))
n-o n o=l nre n m=1

AL

hence (3.4) holds. : 0

Proposition 2 (iv) shows that when V exists the level sets j are

"status sets" for {in}; see [14], §5. We need this result in order to
prove the sufficiency of (3.1) for the existence of a stationary measure

for {in}. 4

Theorem 5 : Suppose {in} is 5—itteducib1e. If A(x,+) admits an invariant

probability measure v such that (3.1) holds, then {in} admits a stationary

probability measure II.

Proof : Suppose (3.1) holds. It follows that

0<I\5(d)[1- 24, (w,E) ]
2 w n-z-o )

E
(3.6) , -
= 1im ¢ J v(dw) [ 2 [1-21 Al(y,E) -k 2 Az(y,E)] .
ko 2=0 L=k+1

E

Now write the mean change of level of {in} as

u(k,w) = § P(k,w; 1,E) § - k ;
, j=0 -

clearly |u(k,w)| < d+1 1f k < d, and




3.7 w(k,w) < u(d,w) , wekE, k>d.

From (3.6), we can choose d sufficiently large that

(3.8) J v(dw) u(d,w) < 0O .
o E

If we write D, = {y : ud,y) Z_-a}, then Iu(d,w)l <a+1lon Da and by choosing

a sufficiently large, from (3.8) we can ensure

(3.9) J v(dw) u(d,w) < 0 .

D,

Now consider, for fixed i,x, the quantity

n -
¢ (1,x) =2 ] J PU(L,%; §,dw) u(d,w)

n

e oy

m=1 £
1 B d-1 _
(3.10) - ) I I BP(d,x; §,dw) u(§,w)
m=1 £ j=0
n ®
+% ) J I OBU(L,x; §,dw) u(g,w) .
m=1 E J=d

Suppose {in} does not admit a stationary measure. From (3.4) and the

boundedness of u(j,w) for j < d we have that the first term on the right of

(3.10) tends to zero as n + ®, and so, using (3.7),

n @® ~
lim faf ¢ _(i,x) < lim inf%‘- ) J Y PR(d,x; §,dw) u(d,w)
n-o n-e m=1 E j=d
(3.11) n o ,
< lim inf 1 Y I T PR(i,x; 3,dw) u(d,w) .
" | 5 I=d
a

But from (3.3), we have for any B ¢ & and any {

n n ® n 4 _
(3.12) %m_i.l A%(x,B) -%mzl jzd P®(1,x; 1,B) +§m21 jzo P(1,x; 1,B) ; 1

we have already shown that the second term in (3.12) tends to zero, so using




- 18 -

the boundedness of u(d,w) on Da we have, putting (3.12) into (3.11).

n
(3.13)  1lim inf ¢ _(i,x) < lim inf % ) J A%(x,dy) u(d,w) .
Do N0 m=1

a
Now we have assumed that {in} is 5—irreducible, so from Propositien 2 (ii),
{a(x,*)} is Y-irreducible, and moreover has by assumption a stationary
measure V. Hence (see Proposition 4.2 of [14]), for Il-almost all x,

and all B ¢ &

(3.14)

o

n
)} A®(x,B) + v(B) .
m=1

Since v >> P, we have from (3.14), (3.13) and (3.9) that for 5-almost all

(i,x)

1im inf ¢n(i,x) :_I v (dw) u(d,w) < 0 .
nre

D

a
However, we can emulate the proof of (9.11) of (14] with g(j,y) = j to show

that for all (i,x),

1lim inf ¢n(i,x) >0
o

this shows that our assumption that {in} does not have a stationary probability
measure (and specifically, that (3.4) holds for individual j) cannot be true,

and so I does exist as required. g

The proof above shows that Neuts' condition (3.1) is effectively an
average "mean-drift'condition, where the averaging is done over the distri-
bution v. Theorem 9.2 of [14] shows that such an average mean drift
condition may also be necessary, under some extra conditions, for positive
recurrence.

We now turn to the necessity of condition (3.1) for ex:stence of a

stationary measure for the chain {in}.

——— :
o inihe usala e s - ittt i
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In order to do this, we first define a further chain {X:} with
transition probabilities on the state space {...,-1,0,1,2,...} X E given

by, for x ¢ E, B ¢ &,
P*(4,x; 3,B) = Ay (6B 5 120, 3= ...0-1,0,1,...

P*(i,x; O0,B) = 6(x,B) , 1 < 0 .

The chain {X:} has the same motion as {in} except that, when in reaches the
level 0, x; actually takes on the negative level that in is "trying" to
reach; and X; is then replaced at level 9 at the next step, but in the
same "“E-position”. Trivially, if {in} is g-irreducible with &(0 XE) > 0

then so is {X:}. We also have

Proposition 3 : If Xn has a stationary probability measure ﬁ, then {X:} has

a stationary probability measure II*, and for some constant b, we have

I*(1,4) = b [(1,4), 1 > 0.

Proof : The stationary equations for {X:} are:

T*(3,8) = J I* (k,dy) P*(k,y; §.B)
k=0
E
bt *x
(3.15) - k_jz-l l I (k,dy) Ak_j.ﬂ(y.B) s ¥ >0
(3.16) n*(j,B) =

1 Ln*(k.dy) AT

and, for j = 0,

ﬂ*(O,B) - 2 J H*(k,dy) P*(k,y; 0,B)

k=~
E

[} x _1

*
(3.17) - kzo I T (k,dy) Agpy(7,B) + kz_mn (k,B)
E
- ] I T*(k,dy) | A (y,B) ,
k=0 E L=k+1

« b e
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using (3.16).

Now (3.15) and (3.17) are the stationary equationg for {in}; these 1
have the solution ﬁ(k,A), and this is unique up to multiplication by a ‘
constant b ([14], Proposition 4.3). From (3.16) we can construct H*(j,B) 1
for jJ < 0, once we have n*(j,B) for j > 0, and the proof is completed by

noting that, from (3.16), !

-1 . @ @
] mG.m = Jn*(k,dw I A(5,B)
Jm—m k=0 J Kh2

< 1 T*K,E) <=,

k=0
-~ m..
since for k > 0, M*(k,E) = b NM(k,E) and ] N(k,E) = 1. 8]
. 0
We can now prove
Theorem 6 : Suppose {in} has an invariant measure ll.  Then {A(x,*)} has an

invariant measure v, and v satisfies (3.1) provided

® 1
(3.18) } NGLE) <= '
j=0
Proof : From Proposition 2 (iii), v exists and satisfies V(B) = 2 ﬁ(k,B);

k=0

«©
so from Proposition 3, V(B) = b E H*(k,B). Hence (3.1) will hold provided
0

L] L]
(3.19) ) J M*(k,dw) [ ] P*(k,w; 3,E) § - k] <O .
k=0 £ LT

Now let h(j,x) = j, 3 > 0, and O otherwise; and let
- -

MGew) = T PM(k,ws 3,d%) B(3,x) - hlk,w) .

j--:b

Clearly (3.19) will hold provided we can prove

(3.20) ) J T*(k,dw) 1 (k%) <0 .
k=0 ¢

We can now emulate the necessity half of Theorem 9.2 of [14] to deduce that




- 21 -

(3.20), as in (9.13) of [14], always holds when {X:} has a stationary
measure, and the :esult will be proved. The only condition that needs to
be checked is that the interchange of integration in (9.14) of [14] is

valid, and it is for this that we need (3.18). 0

Remarks : (i) The need for a bound on f I{dy) h(y) in (9.14) of [14] was
overlooked in the conditions given there; it is claimed that (9.6) suffices
but this not in fact enough.

(11) It is of some historical interest that the condition (3.1)
of a long-term average negative mean drift, shown above to be essentially
equivalent to positive recurrence of {in}, was also first investigated by
Neuts [5] in a situation where only two "drift values' were possible.

It is possible to say a little more about the finiteness of the

mean (3.18) of the measure ﬁ. We have

Proposition 4 : The stationary measure ﬁ has finite mean if either

~

(1) the measure vV has a bounded density with respect to the measure DH; or

~

(i1) whenio has measure OH’ then the variance of the return time to level

9 is finite; i.e.
= 2
(3.21) I On(dw)'Ew(to) < o
E
Proof : Using the operator-geometric form of i given by Theorem 2, we have
that (3.18) holds provided

w>J jcj ol (dw) sd (v, E)
3

E
- I Jad I I slee
E k=1 j=k
(3.22)
=c I f J@n I sfway ] sde,m
EE k=1 i=0

- J 5 fik,dy) ] S3(y.E)
E k=1 j=0
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Using the idgntifﬁcation of Vv in Proposition 2 (1ii) shows that this is

(3.23) - j\)(ay) $ sir.E) - §NGsLE) .
) 30 3

If v has a bounded density with respect to Oﬁ’ then (3.23) is finite since

I oldy) I sl.B) = e HGU,E <c;
E j=0 ) 3
this proves (i). To prove (ii) we use the fact that

jzo s9y,E) = 1 +E(1, | %5 = (0,7))

so that (3.22) is also

(3.24) I I fick,dy) (1 +E(ty | X5 = 0,y)
k=1
E <0
<1+ J 1 M(k,dy) E(T, | Xy = k,y) 5
E k=0

from Cogburn {2] Corollary 3.1, we have that (3.24) is finite provided (3.21)

holds. 3]

In this section we have proved that Neuts' mean drift condition is
essentially related probabilistically to the positive recurrence of the
chain {in}' It is of some interest to know what the positive recurrence
of {in} implies for an arbitrary chain {Xn} with structure (1.1). This
seems difficult to say. From (1.2) and (2.17), L(x,E) = i(x,E), and this
positive recurrence of {;ﬂ} implies at least that {oxn} is well-defined in
the sense that L(x,E) = 1 for oﬁ-almost all x. Moreover {y: L(y,E) = 1}
is stochastically closed, so provided {Xn} is ¢-irreducible and
Bk(y,°) << Sk(y’.) for all k,y, we can deduce that L(x,E) = 1 for $-almost
all x.

However, this does not even guarantee the recurrence of the process

{oX,}- The following example illustrates this.




-

Example : Let E = {0,1,...}, and let the transition law take the form (1.1)

M

with only Ao and A2 being non-zero, and given by

r
% Ay(x,x-1) = pq , x>1,

E ” Ay(x,x+1) = (1-p)q , x21,

| and 4,(0,0) = pa, Ay(0,1) = (1-p)q ;

E Ay(x,x-1) = p(1-q) , x2>1

E Ay Gxl) = A-p)(1-0) , x 21

{ and 4,(0,0) = p(1~q) , A4,(0,1) = (1-p)(1-q) ,
E with 0<p<1l, 0<gq<l. '

Then the marginal chain with transition matrix {A(x,*)} is a random
walk on a half-line, with a stationary probability measure v if and only if
P>k In the other dimension the mean change in level is, for levels
greater than zero, always of the same sign; and this is negative, i.e.

B(x) > 1, if and only if q < %. Hence the necessary and sufficient

coudition for {in} to have a statiopary measure is q < % < p, from Theorems !
5 and 6.

Let us alter the transition law to define {Xn} by setting for x > 1

Bo(x,x-l) = r(l-q)

By(x,xtl) = (1-r)(1-q) ,

but leave Bl(x,x—l) = p(1-q), Bl(x,x+1) = (1-p)(1-q) as for {in}. For the
embedded chain {oxn} we have, by considering whether the chain {X } leaves

level zero or not, for x>1,

(3.25)  E(x | o%p = @ - x > (1-2r)(1-q) + (1-2p) * %E%E *q;

the second term comes because, once the chain {Xn} leaves level 0 (with
probability q) the expected number of steps to return is given by (1-q)/(1-2q)
and on each such step the expected drift to the left is, independent of level

change, 1-2p (unless the chaia hits (N x0), which gives the inequality in
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(3.25)).

From (3.25) we see that, provided q and r are small enough, and p is

~

not too much greater than %, we can ensure that for all x > 1

L
IE(OXn | oxn =x)-x>8 .

This is enough to emsure that {oxn} is transient, as can be seen by
comparing {Oxn} with a random walk with positive drift. Hence {oxn} does

not have a stationary measure, and thus neither does {Xn}. |

In order to deduce positive recurrence of {Xn} we need to know,
]
essentially, that OH exists and has a bounded density with respect to Oﬁ‘

If this happens then we have, for some K,

J ol(dy) E(ty | X5 = (0,y)) <« I M(dy) Bty | Xy = (0,7))

. [ olldy) EGy | X5 = (0,9) <=,

and so {Xn} is positive recurrent also. The case when E is finite is the

only situation where this is automatically true, and we can at least prove

Proposition 5 : If E is finite and {A(x,+)} is an irreducible stochastic

matrix, then (3.1) 1is necessary and sufficient for {xn} to have a stationary

. distribution. = 0

Proof : From the argument above and Proposition 4 (1), our result will
follow from Theorems 5 and 6 provided only that 0ﬁ(x) >0 for each x ¢ E.

It is easy to show that irreducibility of {A(x,+)} implies irreducibility

of {L(x,+)}, which gives the required positivity. O
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§4 Some queueing models

(1) The GI/PH/1 queue

This model is described in detail in Neuts [8], and we do not repeat
-
details here. The bivariate chain {Xn} consists of (Nn’Pn)’ where N_ is
the number of customers immediately before thé nth arrival and Pn is the

h arrival.

phase of service immediately after the nt
The main result that is new i; this situation comes from Proposition

1. Recall that the chain {oxn} gives the phase on successive returns to
level (0,E); this is precisely the phase of service of the arriving

customer who finds the queue empty, and so {Okn} consists of a sequence of
independent and identically distributed random variables; from [8 ] we have
that the distribution of these phases is given by a vector a. The chain
{oxn}, and hence {Xn}, then trivially satisfies the irreducibility Condition

I, with ¢(3) = « Neuts ([8 ], Lemma 7) shows that (3.1) is equivalent to

50
the usual stability condition for the GI/PH /1 queue.
;’ From the discussions of §3 and §2 it follows that, since E is finite,

N under these stability conditions the invariant measure for {Xn} has the form

Mk, 5) = e § o sk@, ;
m

N clearly 0H(j) - aj since {oxn} is a sequence of i.i.d. variables. Since E
is finite, S is R-recurrent when it is irreducible, and so from Theorem 4
we have that S is the unique solution of S = A[S] with copvergence'norm
R > 1 in this case. This shows that Theorem 4 of [8 ] follows from our
results without extra conditions being necessary.

The identification of Xy ™ c2 is deduced in [ 8 ] algebraically, but

the fact that, from Proposition 1, B[S] = a also, is not noticed there.
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(i1) The GI/G/1 queue

There are yarious embedded Markov chains on which the results above
might be demonstrated. In order to compare results with the GI/PH/I queue
above, we wii; take {xn} - {(Nn’sn)} as the chain with N as the number of
customers immediately before the n®P interarrival time and Sn as the residual
service time immediately after the nth interarrival time.

We let G denote the distribution function of service times, and
- .

write u= J t dG(t) for the mean service time; we let F denote the distri-
0 ' ©
bution function of interarrival times, and write A = J t dF(t) for its mean.
0

We assume both A and U are finite.

Let 0,,0 ,03,... denote a renewal process with O, = O having the

1’72 n-1
service distribution function G; and let Rt denote the residual life-time

at time t in this process, i.e. R_ = ¢t - oN(t)’ where N(t) is the number of

t
renewals in [0,t]. 1f Ro = x then 0; = x.  Now write

t
(4.1) P (x,y) =®B(0, <t <0 ., R <y | Ry = x)

for the probability that n renewals occur in [0,T] and that the residual
lifetime at t is in [0,y] given RO - x. It is easy to verify that the

chain {X } has the form (1.1) with
(4.2) A, (x,10,y]) = J Pr{x,y) dF(t)
0

and

By(x,10,y1) = [ I Ay(x,[0,))] G(y) .
o+l :

Hence {oxn} again consists of i.i.d. variables with distribution
function G, and so OH[O,y] = G(y) provided it exists; for this we need to
ensure that {oxn} does not terminate. To check that {oxn} is a proper

chain we can use (3.1), since (ox&}termina:es if and only {f (oin} does.

!
i
1
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Our main result is

Theorem 7 : (1) A necessary and sufficient condition for {A(x,*)} to have

a stationary probability measure v satisfying (3.1) is that A > y.

(1i) When X >y, {Xn} has an invariant probability measure

1(j,+) given by
(4.3) I(k,*) = ¢ I dG(x) Sk(x,')
0
where S(x,*) 1is the minimal solution of
S (x, [0,y])=] jsj(x,dw) Ay, [0,5]) , y e [0, ;-
3 0
and the constant c is given by

(4.4) c=1+{ J (] P*x)] d6(x)} {exp § (1-a)) / n}
0 n=0 n=1
where
(4.5) a, = I 1~ FP*®)] 46 " (x) .
0

Proof : (1) From (4.1) and (4.2),

(4.6) A(x,[0,y]) = J F(dt) P (x,y)

‘where Pt(x,y) -‘P(Rt.i y | Ry = x). The kernel A is thus the transition

probability kernel corresponding to the residual life-time process sampled
at points of an (independent) renewal process generated by F. Provided

¥ < ®, the residual life-time process has invariant measure v vith

x
v(0,x] = %I 1 - 6(x)]dx ,
0
and this transfers immediately to the chain with kernel (4.6) (see [13] for

other results concerning the relationship of the process {Rt} to its

"sampled" version.)
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On the other hand, from (4.1)

nZO n PE(x,@) = E(N(E) | Ry = x) .

The stationarity of v then gives, by Fubini's Theorem

-
(-

['J v(dx) E(N(t) | Ry = x)] dF(t)
0

I v(dx) B(x) =

T OY— 8 OV §

[t/uj dF(t) = A/u ,

which gives our first result.
(ii) From Theorem 5, {in} will have a stationary probability measure
when A > u, and hence {;X } will at least return to 0 with probability one.
Hence Oﬁ exists and has distribution function G(x), and II given by (4.3) is
at least a o-finite stationary measure for {Xn} from Theorem 1 (ii).
We have to prove thatln is a probability measure, and this does not

follow from the general theory used so far: see the end of §3 for a

discussion of the difficulties. We need to prove
(4.7) j oll(dy) E(Tg | Xy =(0,y)) <=,

and to do this we need to evaluate‘E(To ] Xo = (0,y)) for this particular
chain. Suppose X = (0,y) and that during the service time y of this
first arriving customer, ny further customers arrive. By rearranging the
order of service in the usual way, it is clear that in this situation the
expected number of customers served before 0 is again rea?hed is nyy, where
Y is the expected number of customers in a busy period in the GI/G/1 queue;
from [4] it is knmown that, when A >y,

P
(4.8) Y- exp{nzl (1-a))/n} < =

vhere a, is given by (4.5).
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Thus

E(Ty | X5 = (0,y) = 1+ Ty | X = (0,y)

(4.9) =147 WM .
n=0

-

and standard renewal theory [3] shows that for any € and y large,

- -]
(4.10) 0< (] F*y) - y/Al < ye

n=0
Since oH[O,y] = G(y) and G has a finite mean, (4.7) follows from (4.9) and
(6.10). The (finite) value (4.4) of (4.7), which is the constant ¢ in

(4.3), follows from (4.8) and (4.9). 0

As a corollary to (4.10) and (4.11) we see that, if {X;} is any chain
with structure’(1.1) where An is given by (4.2) and Bn has the "replacement"

value

Bp(x [0,y = [ [ 4,(x,(0,%)] H(y)
n+l

for some distribution function H, then {X;} will have a o-finite invariant

measure
]

' (k, [0,y]) = j dH(x) s5(x,[0,5)) ;
0
and II' will be a probability measure if and only if H has a finite mean.

We can also obtain, for the queueing chain {xn},

Proposition 6 : The stationary distribution Il has finite mean

p* = z kll(k, {0,%)) if and only if F has finite variance. In this case
k .

(4.11) Tl l[ -6 Y FHmly dx
¥ 0 n=0

where y is given by (4.8).
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Proof : From (3.23) we have that u* is given by (4.11), and from (4.10) p*
will be finite if and only if V has a finite mean. It is well-known that

this holds if and only if F has a finite variance. 0

(iii) The M/G/1 gqueue

The expression (4.8] for Y simplifies when the inter-arrival time is

exponential: from Neuts [7], we have
Y=AMQA - .

In this case also we have the expected number of arrivals in [0,y] is just
y/A, and so from (4.4), ¢ = A/(A - 1) also.

}his is a computationally useful fact. The standard method of
deriving {lI(k,A)} from the theory above is to solve the non-linear operaﬁor

equation S = A[S] to the desired accuracy then substitute in (4.3). In

general ¢ can only be eatimated as the normalising constant

. ] N
c, = [I dc(x) § sk(x [0,%))171
N ) H »
0 0
[;
where N is the number of terms for which the iterates are calculated.

The difference [1 - c/CN] represents the total probability mass in the

levels above N, 1i.e.
[1-clegl = 1 TW,0,=) ,
N1

which is the intrinsic error in computation of Il when only a finite number
of the iterates Sk are used.
Finally, we note that in this case, from (4.11) we can recover the

fact that the mean queue length at inter-arrival times in equilibrium is

- %[I 2 d6(y)] 1 uO-n) .
0
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